Everyone Loves Schemes Math Olympiad

Lincoln, Nebraska Day I 8 a.m. - 12:30 p.m. June 16, 2012

Note: For *any* problem, the first page of the solution must be a large, in-scale, clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper, carbon paper). Failure to meet any of these requirements will result in an automatic 0 for that problem.

- 1. In acute triangle ABC, let D, E, F denote the feet of the altitudes from A, B, C, respectively, and let ω be the circumcircle of $\triangle AEF$. Let ω_1 and ω_2 be the circles through D tangent to ω at E and F, respectively. Show that ω_1 and ω_2 meet at a point P on BC other than D.
- 2. Find all ordered pairs of positive integers (m, n) for which there exists a set $C = \{c_1, \ldots, c_k\}$ $(k \ge 1)$ of colors and an assignment of colors to each of the mn unit squares of a $m \times n$ grid such that for every color $c_i \in C$ and unit square S of color c_i , exactly two direct (non-diagonal) neighbors of S have color c_i .
- 3. Let f, g be polynomials with complex coefficients such that $gcd(\deg f, \deg g) = 1$. Suppose that there exist polynomials P(x, y) and Q(x, y) with complex coefficients such that f(x) + g(y) = P(x, y)Q(x, y). Show that one of P and Q must be constant.
- S1. Let S_1, S_2 be schemes such that S_2 is quasi-compact and quasi-separated. Let $s: S_1 \to S_2$ be a quasifinite, separated, and finitely presented morphism. Prove that there exists a scheme S_1 and morphisms $s_1: S_1 \to S_1$ and $s_2: S_1 \to S_2$ such that s is the composition of $s_1 \circ s_2$, s_1 is an open embedding, and s_2 is finite.
- S2. Let $f: S_1 \to S_2$ a be proper morphism between quasi-projective integral schemes of finite type over a field. Let $td(S_2)$, $td(S_2)$ be the Todd classes of the tangent bundles of S_1 and S_2 . Suppose s is an element of the Grothendieck group of coherent sheaves on S_1 . Prove that $f_*(ch(s) \cdot td(S_1)) =$ $ch(f_!(s)) \cdot td(S_2)$.
- S3. Let S be an integral scheme of finite type over a field S of characteristic s. Must there exist a nonsingular variety S' over S and a proper birational map from S' to S?

MOSP 2012

Everyone Loves Schemes Math Olympiad

Lincoln, Nebraska Day II 8 a.m. - 12:30 p.m. June 17, 2012

Note: For *any* problem, the first page of the solution must be a large, in-scale, clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper, carbon paper). Failure to meet any of these requirements will result in an automatic 0 for that problem.

- 4. Let a_0, b_0 be positive integers, and define $a_{i+1} = a_i + \lfloor \sqrt{b_i} \rfloor$ and $b_{i+1} = b_i + \lfloor \sqrt{a_i} \rfloor$ for all $i \ge 0$. Show that there exists a positive integer n such that $a_n = b_n$.
- 5. Let ABC be an acute triangle with AB < AC, and let D and E be points on side BC such that BD = CE and D lies between B and E. Suppose there exists a point P inside ABC such that $PD \parallel AE$ and $\angle PAB = \angle EAC$. Prove that $\angle PBA = \angle PCA$.
- 6. A diabolical combination lock has n dials (each with c possible states), where n, c > 1. The dials are initially set to states d_1, d_2, \ldots, d_n , where $0 \le d_i \le c 1$ for each $1 \le i \le n$. Unfortunately, the actual states of the dials (the d_i 's) are concealed, and the initial settings of the dials are also unknown. On a given turn, one may advance each dial by an integer amount c_i ($0 \le c_i \le c 1$), so that every dial is now in a state $d'_i \equiv d_i + c_i \pmod{c}$ with $0 \le d_i \le c 1$. After each turn, the lock opens if and only if all of the dials are set to the zero state; otherwise, the lock selects a random integer k and cyclically shifts the d_i 's by k (so that for every i, d_i is replaced by d_{i-k} , where indices are taken modulo n).

Show that the lock can always be opened, regardless of the choices of the initial configuration and the choices of k (which may vary from turn to turn), if and only if n and c are powers of the same prime.

- S4. Let $S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8$ be a syclic octagon. Let S'_i by the intersection of $S_i S_{i+1}$ and $S_{i+3} S_{i+4}$. (Take $S_9 = S_1, S_{10} = S_2$, et setera) Prove that S'_1, S'_2, \ldots, S'_8 lie on a conic.
- S5. We have a graph with s vertisees and at least $s^2/10$ edges. Each edge is colored in one of S colors such that no two intsident edges have the same color. Assume that no sycles of size 10 have the same set of colors. Prove that there is a constant S such that S is at least $Ss^{\frac{8}{5}}$ for any s.
- S6. Are there positive integers s_1, s_2 such that there exist 2012 positive integers s such that both $s_1 s^2$ and $s_1 s^2$ are perfect squares?

MOSP 2012