Everyone Loves Schemes Math Olympiad

Lincoln, Nebraska
Day I 8 a.m. - 12:30 p.m.
June 16, 2012

Note: For any problem, the first page of the solution must be a large, in-scale, clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper, carbon paper). Failure to meet any of these requirements will result in an automatic 0 for that problem.

1. In acute triangle $A B C$, let D, E, F denote the feet of the altitudes from A, B, C, respectively, and let ω be the circumcircle of $\triangle A E F$. Let ω_{1} and ω_{2} be the circles through D tangent to ω at E and F, respectively. Show that ω_{1} and ω_{2} meet at a point P on $B C$ other than D.
2. Find all ordered pairs of positive integers (m, n) for which there exists a set $C=\left\{c_{1}, \ldots, c_{k}\right\}(k \geq 1)$ of colors and an assignment of colors to each of the $m n$ unit squares of a $m \times n$ grid such that for every color $c_{i} \in C$ and unit square S of color c_{i}, exactly two direct (non-diagonal) neighbors of S have color c_{i}.
3. Let f, g be polynomials with complex coefficients such that $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)=1$. Suppose that there exist polynomials $P(x, y)$ and $Q(x, y)$ with complex coefficients such that $f(x)+g(y)=P(x, y) Q(x, y)$. Show that one of P and Q must be constant.

S1. Let S_{1}, S_{2} be schemes such that S_{2} is quasi-compact and quasi-separated. Let $s: S_{1} \rightarrow S_{2}$ be a quasifinite, separated, and finitely presented morphism. Prove that there exists a scheme S_{1} and morphisms $s_{1}: S_{1} \rightarrow S_{1}$ and $s_{2}: S_{1} \rightarrow S_{2}$ such that s is the composition of $s_{1} \circ s_{2}, s_{1}$ is an open embedding, and s_{2} is finite.

S2. Let $f: S_{1} \rightarrow S_{2}$ a be proper morphism between quasi-projective integral schemes of finite type over a field. Let $\operatorname{td}\left(S_{2}\right), \operatorname{td}\left(S_{2}\right)$ be the Todd classes of the tangent bundles of S_{1} and S_{2}. Suppose s is an element of the Grothendieck group of coherent sheaves on S_{1}. Prove that $f_{*}\left(\operatorname{ch}(s) \cdot \operatorname{td}\left(S_{1}\right)\right)=$ $\operatorname{ch}\left(f_{!}(s)\right) \cdot \operatorname{td}\left(S_{2}\right)$.

S3. Let \mathcal{S} be an integral scheme of finite type over a field S of characteristic s. Must there exist a nonsingular variety \mathcal{S}^{\prime} over S and a proper birational map from \mathcal{S}^{\prime} to \mathcal{S} ?

Everyone Loves Schemes Math Olympiad

Lincoln, Nebraska

Day II 8 a.m. - 12:30 p.m.
June 17, 2012

Note: For any problem, the first page of the solution must be a large, in-scale, clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper, carbon paper). Failure to meet any of these requirements will result in an automatic 0 for that problem.
4. Let a_{0}, b_{0} be positive integers, and define $a_{i+1}=a_{i}+\left\lfloor\sqrt{b_{i}}\right\rfloor$ and $b_{i+1}=b_{i}+\left\lfloor\sqrt{a_{i}}\right\rfloor$ for all $i \geq 0$. Show that there exists a positive integer n such that $a_{n}=b_{n}$.
5. Let $A B C$ be an acute triangle with $A B<A C$, and let D and E be points on side $B C$ such that $B D=C E$ and D lies between B and E. Suppose there exists a point P inside $A B C$ such that $P D \| A E$ and $\angle P A B=\angle E A C$. Prove that $\angle P B A=\angle P C A$.
6. A diabolical combination lock has n dials (each with c possible states), where $n, c>1$. The dials are initially set to states $d_{1}, d_{2}, \ldots, d_{n}$, where $0 \leq d_{i} \leq c-1$ for each $1 \leq i \leq n$. Unfortunately, the actual states of the dials (the d_{i} 's) are concealed, and the initial settings of the dials are also unknown. On a given turn, one may advance each dial by an integer amount $c_{i}\left(0 \leq c_{i} \leq c-1\right)$, so that every dial is now in a state $d_{i}^{\prime} \equiv d_{i}+c_{i}(\bmod c)$ with $0 \leq d_{i} \leq c-1$. After each turn, the lock opens if and only if all of the dials are set to the zero state; otherwise, the lock selects a random integer k and cyclically shifts the d_{i} 's by k (so that for every i, d_{i} is replaced by d_{i-k}, where indices are taken modulo n).
Show that the lock can always be opened, regardless of the choices of the initial configuration and the choices of k (which may vary from turn to turn), if and only if n and c are powers of the same prime.

S4. Let $S_{1} S_{2} S_{3} S_{4} S_{5} S_{6} S_{7} S_{8}$ be a syclic octagon. Let S_{i}^{\prime} by the intersection of $S_{i} S_{i+1}$ and $S_{i+3} S_{i+4}$. (Take $S_{9}=S_{1}, S_{10}=S_{2}$, et setera) Prove that $S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{8}^{\prime}$ lie on a conic.

S5. We have a graph with s vertisees and at least $s^{2} / 10$ edges. Each edge is colored in one of S colors such that no two intsident edges have the same color. Assume that no sycles of size 10 have the same set of colors. Prove that there is a constant \mathcal{S} such that S is at least $\mathcal{S} s^{\frac{8}{5}}$ for any s.
S6. Are there positive integers s_{1}, s_{2} such that there exist 2012 positive integers s such that both $s_{1}-s^{2}$ and $s_{1}-s^{2}$ are perfect squares?

