2nd Excellently LaTeX'ed Sample MOSP Orgy

Day I 8:00 AM - 12:30 PM

June 15, 2013

Note: For *any* problem, the first page of the solution must be a large, in-scale, clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper, carbon paper). Failure to meet any of these requirements will result in an automatic 0 for that problem.

1. Let $a_1, a_2, ..., a_9$ be nine real numbers, not necessarily distinct, with average m. Let A denote the number of triples $1 \le i \le j \le k \le 9$ for which $a_i + a_j + a_k \ge 3m$. What is the minimum possible value of A?

2. Let a,b,c be positive reals satisfying $a+b+c=a^{(1/7)}+b^{(1/7)}+c^{(1/7)}$. Prove that $a^a * b^b * c^c \ge 1$.

3. Let $m_1, m_2, ..., m_{2013} > 1$ be 2013 pairwise relatively prime positive integers and $A_1, A_2, ..., A_{2013}$ be 2013 (possibly empty) sets with A_i a subset of $\{1, 2, ..., m_i-1\}$ for i=1,2,...,2013. Prove that there is a positive integer N such that $N \le (2|A_1|+1) (2|A_2|+1) \dots (2|A_{2013}|+1)$

and for each i=1,2,...,2013, there does not exist a in A_i such that m_i divides N - a.

S1. Let S be an s_0 -dimensional projective algebraic variety, smooth or with mild singularities, and let S* be an ample divisor on S. Consider the canonical class S' of S.

(a) Prove that for any $s \ge s_0 + 1$, $sS^* + S'$ is basepoint-free.

(b) Prove that for any $s \ge s_0 + 2$, $sS^* + S'$ is very ample.

S2. Determine if there are nonzero complex numbers $s_1, s_2, \ldots, s_{2013}$ (not necessarily distinct) for which $(s-s_1) * (s-s_2) * \ldots * (s-s_{2013})$ is a polynomial (in s) with integer coefficients, and

1 < prod (S=1 to 2013) of max(1, $|s_s|) < 1.17628018$.

S3. Prove that 10 is a primitive root modulo infinitely many primes.

Time: 4.5 hours Each problem is worth 21 push-ups

2nd Excellently LaTeX'ed Sample MOSP Orgy

Day II 8:00 AM – 12:30 PM

June 16, 2013

Note: For *any* problem, the first page of the solution must be a large, in-scale, clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper, carbon paper). Failure to meet any of these requirements will result in an automatic 0 for that problem.

4. Triangle ABC is inscribed in circle w. A circle with chord BC intersects segments AB and AC at S and R, respectively. Segments BR and CS meet at L, and rays LR and LS intersect w at D and E, respectively. The internal angle bisector of angle BDE meets line ER at K. Prove that if BE = BR, then angle ELK = 1/2 angle BCD.

5. For what polynomials P(n) with integer coefficients can a positive integer be assigned to every lattice point in R^3 so that for every integer $n \ge 1$, the sum of the n^3 integers assigned to any n x n x n grid of lattice points is divisible by P(n)?

6. Consider a function f: Z->Z such that for every integer $n \ge 0$, there are at most $0.001n^2$ pairs of integers (x,y) for which f(x+y) = f(x) + f(y) and max |x|, $|y| \le n$. Is it possible that for some integer $n \ge 0$, there are more than n integers a such that f(a) = f(a) + f(a) and $|a| \le n$?

S4. Given a graph with labeled edges, the *stability* of a vertex is defined as the sum of the labels of all edges to which that vertex is incident. Determine whether there exists a tree with s > 2 edges such that, for every labeling of the edges with the numbers 1, 2, . . ., s (each used exactly once), there exist two vertices with the same stability.

S5. Find all integers s such that there exist positive integers s_1 , s_2 , s_3 satisfying $4/s = 1/s_1 + 1/s_2 + 1/s_3$.

S6. Is pi^sqrt2 rational?

Time: 4.5 hours Each problem is worth 21 push-ups