$2^{\text {nd }}$ Excellently LaTeX'ed Sample MOSP Orgy

Day I 8:00 AM - 12:30 PM

June 15, 2013

Note: For any problem, the first page of the solution must be a large, in-scale, clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper, carbon paper). Failure to meet any of these requirements will result in an automatic 0 for that problem.

1. Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots$, a_{9} be nine real numbers, not necessarily distinct, with average m . Let A denote the number of triples $1<=\mathrm{i}$ $<\mathrm{j}<\mathrm{k}<=9$ for which $\mathrm{a}_{\mathrm{i}}+\mathrm{a}_{\mathrm{j}}+\mathrm{a}_{\mathrm{k}}>=3 \mathrm{~m}$. What is the minimum possible value of A ?
2. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive reals satisfying $\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{a}^{\wedge}(1 / 7)+\mathrm{b}^{\wedge}(1 / 7)+\mathrm{c}^{\wedge}(1 / 7)$. Prove that $\mathrm{a}^{\wedge} \mathrm{a}^{*} \mathrm{~b}^{\wedge} \mathrm{b} * \mathrm{c}^{\wedge} \mathrm{c}>=1$.
3. Let $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{2013}>1$ be 2013 pairwise relatively prime positive integers and $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{2013}$ be 2013 (possibly empty) sets with A_{i} a subset of $\left\{1,2, \ldots, m_{i}-1\right\}$ for $i=1,2, \ldots, 2013$. Prove that there is a positive integer N such that

$$
\mathrm{N}<=\left(2\left|\mathrm{~A}_{1}\right|+1\right)\left(2\left|\mathrm{~A}_{2}\right|+1\right) \ldots\left(2\left|\mathrm{~A}_{2013}\right|+1\right)
$$

and for each $\mathrm{i}=1,2, \ldots, 2013$, there does not exist a in A_{i} such that m_{i} divides $\mathrm{N}-\mathrm{a}$.

S1. Let S be an s_{0}-dimensional projective algebraic variety, smooth or with mild singularities, and let S^{*} be an ample divisor on S . Consider the canonical class S^{\prime} of S .
(a) Prove that for any $\mathrm{s}>=\mathrm{s}_{0}+1, \mathrm{sS}^{*}+\mathrm{S}^{\prime}$ is basepoint-free.
(b) Prove that for any $\mathrm{s}>=\mathrm{s}_{0}+2, \mathrm{sS}^{*}+\mathrm{S}^{\prime}$ is very ample.

S2. Determine if there are nonzero complex numbers $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{2013}$ (not necessarily distinct) for which $\left(\mathrm{s}-\mathrm{s}_{1}\right) *\left(\mathrm{~s}-\mathrm{s}_{2}\right) * \ldots *$ ($\mathrm{s}-\mathrm{s}_{2013}$) is a polynomial (in s) with integer coefficients, and

$$
1<\operatorname{prod}(\mathrm{S}=1 \text { to } 2013) \text { of } \max \left(1,\left|\mathrm{~S}_{\mathrm{S}}\right|\right)<1.17628018
$$

S3. Prove that 10 is a primitive root modulo infinitely many primes.

$2^{\text {nd }}$ Excellently LaTeX'ed Sample MOSP Orgy

Day II 8:00 AM - 12:30 PM

June 16, 2013

Note: For any problem, the first page of the solution must be a large, in-scale, clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper, carbon paper). Failure to meet any of these requirements will result in an automatic 0 for that problem.
4. Triangle $A B C$ is inscribed in circle w. A circle with chord $B C$ intersects segments $A B$ and $A C$ at S and R, respectively. Segments BR and CS meet at L, and rays LR and LS intersect w at D and E , respectively. The internal angle bisector of angle BDE meets line ER at K . Prove that if $\mathrm{BE}=\mathrm{BR}$, then angle $\mathrm{ELK}=1 / 2$ angle BCD .
5. For what polynomials $\mathrm{P}(\mathrm{n})$ with integer coefficients can a positive integer be assigned to every lattice point in R^{3} so that for every integer $\mathrm{n}>=1$, the sum of the n^{3} integers assigned to any $\mathrm{n} \times \mathrm{n} \times \mathrm{n}$ grid of lattice points is divisible by $\mathrm{P}(\mathrm{n})$?
6. Consider a function $\mathrm{f}: \mathrm{Z}->\mathrm{Z}$ such that for every integer $\mathrm{n}>=0$, there are at most $0.001 \mathrm{n}^{2}$ pairs of integers (x, y) for which $\mathrm{f}(\mathrm{x}+\mathrm{y})=/=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$ and $\max |\mathrm{x}|,|\mathrm{y}|<=\mathrm{n}$. Is it possible that for some integer $\mathrm{n}>=0$, there are more than n integers a such that $\mathrm{f}(\mathrm{a})=/=\mathrm{a} * \mathrm{f}(1)$ and $|\mathrm{a}|<=\mathrm{n}$?

S4. Given a graph with labeled edges, the stability of a vertex is defined as the sum of the labels of all edges to which that vertex is incident. Determine whether there exists a tree with $s>2$ edges such that, for every labeling of the edges with the numbers $1,2, \ldots, s$ (each used exactly once), there exist two vertices with the same stability.

S5. Find all integers s such that there exist positive integers s_{1}, s_{2}, s_{3} satisfying

$$
4 / \mathrm{s}=1 / \mathrm{s}_{1}+1 / \mathrm{s}_{2}+1 / \mathrm{s}_{3} .
$$

S6. Is pi^sqrt2 rational?

Time: 4.5 hours
Each problem is worth 21 push-ups

