
Every Little Mistake =⇒ 0 Shortlist

MOP 2012

June 12, 2012

Note: The problem czars’ recommendations are bolded.
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1 Geometry

G1. (Ray Li) In acute triangle ABC, let D,E, F denote the feet of the altitudes from A,B,C, respectively,
and let ω be the circumcircle of 4AEF . Let ω1 and ω2 be the circles through D tangent to ω at E
and F , respectively. Show that ω1 and ω2 meet at a point P on BC other than D.

G2. (Ray Li) In triangle ABC, P is a point on altitude AD. Q,R are the feet of the perpendiculars from
P to AB,AC, and QP,RP meet BC at S and T respectively. the circumcircles of BQS and CRT
meet QR at X,Y .

a) Prove SX, TY,AD are concurrent at a point Z.

b) Prove Z is on QR iff Z = H, where H is the orthocenter of ABC.

G3. (Alex Zhu) ABC is a triangle with incenter I. The foot of the perpendicular from I to BC is D, and
the foot of the perpendicular from I to AD is P . Prove that ∠BPD = ∠DPC.

G4. (Ray Li) Circles Ω and ω are internally tangent at point C. Chord AB of Ω is tangent to ω at E, where
E is the midpoint of AB. Another circle, ω1 is tangent to Ω, ω, and AB at D,Z, and F respectively.
Rays CD and AB meet at P . If M is the midpoint of major arc AB, show that tan∠ZEP = PE

CM .

G5. (Calvin Deng) Let ABC be an acute triangle with AB < AC, and let D and E be points on side BC
such that BD = CE and D lies between B and E. Suppose there exists a point P inside ABC such
that PD ‖ AE and ∠PAB = ∠EAC. Prove that ∠PBA = ∠PCA.

G6. (Ray Li) In 4ABC, H is the orthocenter, and AD,BE are arbitrary cevians. Let ω1, ω2 denote the
circles with diameters AD and BE, respectively. HD,HE meet ω1, ω2 again at F,G. DE meets ω1, ω2

again at P1, P2 respectively. FG meets ω1, ω2 again Q1, Q2 respectively. P1H,Q1H meet ω1 at R1, S1

respectively. P2H,Q2H meet ω2 at R2, S2 respectively. Let P1Q1 ∩P2Q2 = X, and R1S1 ∩R2S2 = Y .
Prove that X,Y,H are collinear.

G7. (Alex Zhu) Let 4ABC be an acute triangle with circumcenter O such that AB < AC, let Q be the
intersection of the external bisector of ∠A with BC, and let P be a point in the interior of 4ABC
such that 4BPA is similar to 4APC. Show that ∠QPA + ∠OQB = 90◦.
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2 Algebra

A1. (Ray Li, Max Schindler) Let x1, x2, x3, y1, y2, y3 be nonzero real numbers satisfying x1 + x2 + x3 =
0, y1 + y2 + y3 = 0. Prove that

x1x2 + y1y2√
(x2

1 + y21)(x2
2 + y22)

+
x2x3 + y2y3√

(x2
2 + y22)(x2

3 + y23)
+

x3x1 + y3y1√
(x2

3 + y23)(x2
1 + y21)

≥ −3
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A2. (Owen Goff) Let a, b, c be three positive real numbers such that a ≤ b ≤ c and a + b + c = 1. Prove
that

a + c√
a2 + c2

+
b + c√
b2 + c2

+
a + b√
a2 + b2

≤ 3
√

6(b + c)2√
(a2 + b2)(b2 + c2)(c2 + a2)

.

A3. (David Yang) Let a0, b0 be positive integers, and define ai+1 = ai + b
√
bic and bi+1 = bi + b√aic for

all i ≥ 0. Show that there exists a positive integer n such that an = bn.

A4. (David Yang) Prove that if m,n are relatively prime positive integers, xm − yn is irreducible in the
complex numbers. (A polynomial P (x, y) is irreducible if there do not exist nonconstant polynomials
f(x, y) and g(x, y) such that P (x, y) = f(x, y)g(x, y) for all x, y.)

A5. (Calvin Deng) Let a, b, c ≥ 0. Show that

(a2 + 2bc)2012 + (b2 + 2ca)2012 + (c2 + 2ab)2012 ≤ (a2 + b2 + c2)2012 + 2(ab + bc + ca)2012.

A6. (Victor Wang) Let f, g be polynomials with complex coefficients such that gcd(deg f, deg g) = 1.
Suppose that there exist polynomials P (x, y) and Q(x, y) with complex coefficients such that f(x) +
g(y) = P (x, y)Q(x, y). Show that one of P and Q must be constant.

Note: A4 is a special case of A6, but is significantly easier.

A7. (Alex Zhu) Find all functions f : Q → R such that f(x)f(y)f(x + y) = f(xy)(f(x) + f(y)) for all
x, y ∈ Q.

A8. (David Yang) Let A1A2A3A4A5A6A7A8 be a cyclic octagon. Let Bi by the intersection of AiAi+1 and
Ai+3Ai+4. (Take A9 = A1, A10 = A2, etc.) Prove that B1, B2, . . . , B8 lie on a conic.
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3 Number Theory

N1. (David Yang, Alex Zhu) Find all positive integers n such that 4n + 6n + 9n is a square.

N2. (Anderson Wang) For positive rational x, if x is written in the form p
q with p, q positive relatively

prime integers, define f(x) = p + q. For example, f(1) = 2. Prove that if f(x) = f(mxn ) for rational x
and positive integers m,n, then f(x) divides |m− n|.
Possible part (b): Let n be a positive integer. If all x which satisfy f(x) = f(2nx) also satisfy
f(x) = 2n − 1, find all possible values of n.

N3. (Alex Zhu) Let s(k) be the number of ways to express k as the sum of distinct 2012th powers. Show
that for every real number c there exists an integer n such that s(n) > cn.

N4. (Lewis Chen) Do there exist positive integers b, n > 1 such that when n is expressed in base b, there
are more than n distinct permutations of its digits? For example, when b = 4 and n = 18, 18 = 1024,
but 102 only has 6 digit arrangements. (Leading zeros are allowed in the permutations.)

N5. (Ravi Jagadeesan) Let n > 2 be a positive integer and let p be a prime. Suppose that the nonzero
integers are colored in n colors. Let a1, a2, . . . , an be integers such that for all 1 ≤ i ≤ n, pi - ai and
pi−1 | ai. In terms of n, p, and {ai}ni=1, determine if there must exist integers x1, x2, . . . , xn of the
same color such that a1x1 + a2x2 + · · ·+ anxn = 0.

N6. (Calvin Deng) Prove that if a and b are positive integers and ab > 1, then⌊
(a− b)2 − 1

ab

⌋
=

⌊
(a− b)2 − 1

ab− 1

⌋
Here bxc denotes the greatest integer not exceeding x.

N7. (Bobby Shen) A diabolical combination lock has n dials (each with c possible states), where n, c > 1.
The dials are initially set to states d1, d2, . . . , dn, where 0 ≤ di ≤ c−1 for each 1 ≤ i ≤ n. Unfortunately,
the actual states of the dials (the di’s) are concealed, and the initial settings of the dials are also
unknown. On a given turn, one may advance each dial by an integer amount ci (0 ≤ ci ≤ c − 1), so
that every dial is now in a state d′i ≡ di + ci (mod c) with 0 ≤ d′i ≤ c − 1. After each turn, the lock
opens if and only if all of the dials are set to the zero state; otherwise, the lock selects a random integer
k and cyclically shifts the di’s by k (so that for every i, di is replaced by di−k, where indices are taken
modulo n).

Show that the lock can always be opened, regardless of the choices of the initial configuration and the
choices of k (which may vary from turn to turn), if and only if n and c are powers of the same prime.

N8. (Victor Wang) Fix two positive integers a, k ≥ 2, and let f ∈ Z[x] be a polynomial. Suppose that
for all sufficiently large positive integers n, there exists a rational number x satisfying f(x) = f(an)k.
Prove that there exists a polynomial g ∈ Q[x] such that f(g(x)) = f(x)k for all real x.

N9. (David Yang) Are there positive integers m,n such that there exist 2012 positive integers x such that
both m− x2 and n− x2 are perfect squares?
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4 Combinatorics

C1. (David Yang) Let n ≥ 2 be a positive integer. Given a sequence si of n distinct real numbers, define the
“class” of the sequence to be the sequence a1, a2, . . . , an−1, where ai is 1 if si+1 > si and −1 otherwise.

Find the smallest integer m such that there exists a sequence wi such that for every possible class of
a sequence of length n, there is a subsequence of wi that has that class.

C2. (David Yang) Let A be the set of positive integers with at most 10 digits and with all digits 0 or 1.
Let B be the set of positive integers with at most 10 digits and with all digits 0,1,2, or 3. Define the
difference set X − Y of two sets of reals X, Y to be the set of elements z of the form x − y, where
x ∈ X and y ∈ Y . Prove that for any finite set of positive integers C, |C−A| ≤ |C−B| ≤ 1024|C−A|.

C3. (David Yang) Find all ordered pairs of positive integers (m,n) for which there exists a set C =
{c1, . . . , ck} (k ≥ 1) of colors and an assignment of colors to each of the mn unit squares of a m × n
grid such that for every color ci ∈ C and unit square S of color ci, exactly two direct (non-diagonal)
neighbors of S have color ci.

C4. (Calvin Deng) A tournament on 2k vertices contains no 7-cycles. Show that its vertices can be par-
titioned into two sets, each with size k, such that the edges between vertices of the same set do not
determine any 3-cycles.

C5. (Linus Hamilton) Form the infinite graph A by taking the set of primes p congruent to 1 (mod 4), and
connecting p and q if they are quadratic residues modulo each other. Do the same for a graph B with
the primes 1 (mod 8). Show A and B are isomorphic to each other.

C6. (Linus Hamilton) Consider a directed graph G with n vertices, where 1-cycles and 2-cycles are permit-
ted. For any set S of vertices, let N+(S) denote the out-neighborhood of S (i.e. set of successors of
S), and define (N+)k(S) = N+((N+)k−1(S)) for k ≥ 2.

For fixed n, let f(n) denote the maximum possible number of distinct sets of vertices in {(N+)k(X)}∞k=1.
Show that there exists n > 2012 such that f(n) < 1.0001n.

C7. (David Yang) We have a graph with n vertices and at least n2/10 edges. Each edge is colored in one
of c colors such that no two incident edges have the same color. Assume that no cycles of size 10 have
the same set of colors. Prove that there is a constant k such that c is at least kn

8
5 for any n.

C8. (Victor Wang) Consider the equilateral triangular lattice in the complex plane defined by the Eisenstein
integers; let the ordered pair (x, y) denote the complex number x + yω for ω = e2πi/3. We define an
ω-chessboard polygon to be a (non self-intersecting) polygon whose sides are situated along lines of
the form x = a or y = b, where a and b are integers. These lines divide the interior into unit triangles,
which are shaded alternately black and white so that adjacent triangles have different colors. To tile
an ω-chessboard polygon by lozenges is to exactly cover the polygon by non-overlapping rhombuses
consisting of two bordering triangles. Finally, a tasteful tiling is one such that for every unit hexagon
tiled by three lozenges, each lozenge has a black triangle on its left (defined by clockwise orientation)
and a white triangle on its right (so the lozenges are BW, BW, BW in clockwise order).

a) Prove that if an ω-chessboard polygon can be tiled by lozenges, then it can be done so tastefully.

b) Prove that such a tasteful tiling is unique.
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