MathLinks an Art of Problem Solving College Playground Articles The second term in asymptotic expansion
by Moubinool OMARJEE, Paris.

We will denote A.E. for asymptotic expansion

Application 1:

$$
x_{0}=1, x_{n+1}=x_{n}+\frac{1}{x_{n}}
$$

All the terms are strictly positives, the sequence $\left(x_{n}\right)$ is increasing Suppose it bounded then it will converge to $L>0$, with $L=L+\frac{1}{L}$ contradiction.

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} x_{n}=+\infty \\
x_{n+1}^{2}-x_{n}^{2}=2+\frac{1}{x_{n}^{2}} \rightarrow 2 \text { when } n \rightarrow+\infty
\end{gathered}
$$

With Cesaro theorem

$$
\frac{1}{n} \sum_{k=0}^{n-1}\left(x_{k+1}^{2}-x_{k}^{2}\right) \rightarrow 2 \text { when } n \rightarrow+\infty
$$

The equivalent is

$$
\begin{gathered}
x_{n} \sim \sqrt{2 n} \\
x_{n+1}^{2}-x_{n}^{2}-2=\frac{1}{x_{n}^{2}} \sim \frac{1}{2 n}
\end{gathered}
$$

Now we use equivalent of partial sum for divergent series with constant sign.

$$
\begin{aligned}
& \sum_{k=1}^{n-1}\left(x_{k+1}^{2}-x_{k}^{2}-2\right) \sim \frac{1}{2} \sum_{k=1}^{n-1} \frac{1}{k} \sim \frac{1}{2} \ln (n) \\
& x_{n}^{2}-2 n \sim \frac{1}{2} \ln (n) \\
x_{n}^{2}= & 2 n+\frac{1}{2} \ln (n)+o(\ln (n)) \\
x_{n}= & \sqrt{2 n+\frac{1}{2} \ln (n)+o(\ln (n))}=\sqrt{2 n}\left(1+\frac{1}{2 n} \ln (n)+o\left(\frac{\ln (n)}{n}\right)\right)^{\frac{1}{2}} \\
x_{n}= & \sqrt{2 n}\left(1+\frac{1}{2} \frac{1}{2 n} \ln (n)+o\left(\frac{\ln (n)}{n}\right)\right) \\
x_{n}= & \sqrt{2 n}+\frac{\sqrt{2}}{4 \sqrt{n}} \ln (n)+o\left(\frac{\ln (n)}{\sqrt{n}}\right)
\end{aligned}
$$

The second term in asymptotic expansion is $\frac{\sqrt{2}}{4 \sqrt{n}} \ln (n)$

Application 2 Let $x_{0}=1, x_{n+1}=\sin \left(x_{n}\right)$

All terms of (x_{n}) are strictly positive, decreasing then the limit of $\left(x_{n}\right)$ exist $L \geq 0$ and $L=\sin (L)$ so the limit is $L=0$

Let's find a real a such that

$$
x_{n+1}^{a}-x_{n}^{a} \rightarrow k \neq 0 \text { when } n \rightarrow+\infty
$$

(1) $x_{n+1}^{a}-x_{n}^{a}=\left(\sin \left(x_{n}\right)\right)^{a}-x_{n}^{a}$
$x_{n+1}^{a}-x_{n}^{a}=\left(x_{n}-\frac{x_{n}^{3}}{6}+o\left(x_{n}^{3}\right)\right)^{a}-x_{n}^{a}$
$x_{n+1}^{a}-x_{n}^{a}=x_{n}^{a}\left(\left(1-\frac{x_{n}^{2}}{6}+o\left(x_{n}^{2}\right)\right)^{a}-1\right)$
$x_{n+1}^{a}-x_{n}^{a}=x_{n}^{a}\left(1-a \frac{x_{n}^{2}}{6}+o\left(x_{n}^{2}\right)-1\right)$
$x_{n+1}^{a}-x_{n}^{a}=-a \frac{x_{n}^{2+a}}{6}+o\left(x_{n}^{2+a}\right)$

Let's take $a=-2$ then

$$
\frac{1}{x_{n+1}^{2}}-\frac{1}{x_{n}^{2}}=\frac{1}{3}+o(1) \rightarrow \frac{1}{3} \text { when } n \rightarrow+\infty
$$

With the Cesaro theorem

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=0}^{n-1}\left(\frac{1}{x_{k+1}^{2}}-\frac{1}{x_{k}^{2}}\right) \rightarrow \frac{1}{3} \text { when } n \rightarrow+\infty \\
& \text { (2) } x_{n} \sim \sqrt{\frac{3}{n}} \text { or } x_{n}=\sqrt{\frac{3}{n}}+o\left(\frac{1}{n}\right)
\end{aligned}
$$

Now we take one more term in asymptotic expansion in (1)

$$
\begin{aligned}
& x_{n+1}^{a}-x_{n}^{a}=\left(x_{n}-\frac{x_{n}^{3}}{6}+\frac{x_{n}^{5}}{120}+o\left(x_{n}^{5}\right)\right)^{a}-x_{n}^{a} \\
& x_{n+1}^{a}-x_{n}^{a}=x_{n}^{a}\left(\left(1-\frac{x_{n}^{2}}{6}+\frac{x_{n}^{4}}{120}+o\left(x_{n}^{4}\right)\right)^{a}-1\right) \\
& x_{n+1}^{a}-x_{n}^{a}=x_{n}^{a}\left(1-a \frac{x_{n}^{2}}{6}+a \frac{x_{n}^{4}}{120}+\frac{a(a-1)}{2}\left(\frac{x_{n}^{2}}{6}\right)^{2}+o\left(x_{n}^{4}\right)-1\right) \\
& x_{n+1}^{a}-x_{n}^{a}=-a \frac{x_{n}^{2+a}}{6}+a \frac{x_{n}^{4+a}}{120}+\frac{a(a-1)}{2} \frac{x_{n}^{4+a}}{36}+o\left(x_{n}^{4}\right)
\end{aligned}
$$

with $a=-2$

$$
\frac{1}{x_{n+1}^{2}}-\frac{1}{x_{n}^{2}}=\frac{1}{3}+\frac{x_{n}^{2}}{15}+o\left(x_{n}^{2}\right)
$$

with (2)

$$
\begin{aligned}
& \frac{1}{x_{n+1}^{2}}-\frac{1}{x_{n}^{2}}-\frac{1}{3} \sim \frac{1}{15} \frac{3}{n} \\
& \frac{1}{x_{n+1}^{2}}-\frac{1}{x_{n}^{2}}-\frac{1}{3} \sim \frac{1}{5 n}
\end{aligned}
$$

Now we use equivalent of partial sum for divergent series with constant sign.

$$
\begin{aligned}
& \sum_{k=1}^{n-1}\left(\frac{1}{x_{k+1}^{2}}-\frac{1}{x_{k}^{2}}-\frac{1}{3}\right) \sim \frac{1}{5} \sum_{k=1}^{n-1} \frac{1}{k} \sim \frac{\ln (n)}{5} \\
\frac{1}{x_{n}^{2}}-\frac{n}{3} & =\frac{\ln (n)}{5}+o(\ln (n)) \\
x_{n} & =\frac{1}{\sqrt{\frac{n}{3}}+\frac{\ln (n)}{5}+o(\ln (n))} \\
x_{n} & =\sqrt{\frac{3}{n}}\left(1+\frac{3 \ln (n)}{5 n}+o\left(\frac{\ln (n)}{n}\right)\right)^{-\frac{1}{2}} \\
x_{n} & =\sqrt{\frac{3}{n}}\left(1-\frac{1}{2} \frac{3 \ln (n)}{5 n}+o\left(\frac{\ln (n)}{n}\right)\right) \\
x_{n} & =\sqrt{\frac{3}{n}}-\frac{3 \sqrt{3}}{10} \frac{\ln (n)}{n^{\frac{3}{2}}}+o\left(\frac{\ln (n)}{n^{\frac{3}{2}}}\right)
\end{aligned}
$$

the second term in A.E. is $-\frac{3 \sqrt{3}}{10} \frac{\ln (n)}{n^{\frac{3}{2}}}$
Application $3 x_{0} \in \mathbb{R}+, x_{n+1}=x_{n}+e^{-x_{n}}$
All terms of $\left(x_{n}\right)$ are strictly positive, increasing if $\left(x_{n}\right)$ is bounded then it will converge to $L=L+e^{-L}$ contradiction.

$$
\lim x_{n}=+\infty
$$

Here it is not possible to find a real a such that

$$
x_{n+1}^{a}-x_{n}^{a} \rightarrow k \neq 0 \text { when } n \rightarrow+\infty
$$

You should ask why ? I will explain to you

$$
\begin{aligned}
& x_{n+1}^{a}-x_{n}^{a}=\left(x_{n}+e^{-x_{n}}\right)^{a}-x_{n}^{a} \\
& x_{n+1}^{a}-x_{n}^{a}=x_{n}^{a}\left(\left(1+\frac{e^{-x_{n}}}{x_{n}}\right)^{a}-1\right) \\
& x_{n+1}^{a}-x_{n}^{a}=x_{n}^{a}\left(1+a \frac{e^{-x_{n}}}{x_{n}}+o\left(\frac{e^{-x_{n}}}{x_{n}}\right)-1\right) \\
& \text { (1) } x_{n+1}^{a}-x_{n}^{a}=a x_{n}^{a-1} e^{-x_{n}}+o\left(x_{n}^{a-1} e^{-x_{n}}\right)
\end{aligned}
$$

For any real a

$$
\lim _{n \rightarrow+\infty} x_{n}^{a-1} e^{-x_{n}}=0 \text { since } \lim _{n \rightarrow+\infty} x_{n}=+\infty
$$

We have to find a function F such that

$$
\begin{aligned}
F\left(x_{n+1}\right)-F\left(x_{n}\right) \rightarrow & k \neq 0 \text { when } n \rightarrow+\infty \\
& \text { with } F \text { invertible around }+\infty
\end{aligned}
$$

At this stage I can give you the function F, but I prefer to explain the general idea to find F.

Consider the differential equation associate to $x_{n+1}=x_{n}+e^{-x_{n}}$
that is $y^{\prime}=e^{-y}$ this gives $y^{\prime} e^{y}=1$ integrate it around $+\infty$ you get $e^{y(x)} \sim x$ now we have the function $F(t)=e^{t}$ wich will gives us the key

$$
\begin{aligned}
F\left(x_{n+1}\right)-F\left(x_{n}\right) & =e^{x_{n+1}}-e^{x_{n}} \\
e^{x_{n+1}}-e^{x_{n}} & =e^{x_{n}+e^{-x_{n}}}-e^{x_{n}} \\
(1) \quad e^{x_{n+1}}-e^{x_{n}} & =e^{x_{n}}\left(e^{e^{-x_{n}}}-1\right) \\
e^{x_{n+1}}-e^{x_{n}} & =e^{x_{n}}\left(1+e^{-x_{n}}+o\left(e^{-x_{n}}\right)-1\right) \\
e^{x_{n+1}}-e^{x_{n}} & =1+o(1) \rightarrow 1 \quad \text { when } n \rightarrow+\infty
\end{aligned}
$$

With Cesaro theorem

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=0}^{n-1}\left(e^{x_{k+1}}-e^{x_{k}}\right) \rightarrow 1 \quad \text { when } n \rightarrow+\infty \\
& e^{x_{n}} \sim n \text { then } x_{n} \sim \ln (n)
\end{aligned}
$$

Taking one more term in (1)

$$
\begin{aligned}
e^{x_{n+1}}-e^{x_{n}}= & e^{x_{n}}\left(1+e^{-x_{n}}+\frac{1}{2} e^{-2 x_{n}}+o\left(e^{-2 x_{n}}\right)-1\right) \\
e^{x_{n+1}}-e^{x_{n}}= & 1+\frac{1}{2} e^{-x_{n}}+o\left(e^{-x_{n}}\right) \\
& e^{x_{n+1}}-e^{x_{n}}-1 \sim \frac{1}{2 n}
\end{aligned}
$$

Again with we use equivalent of partial sum for divergent series with constant sign.

$$
\begin{aligned}
& \sum_{k=1}^{n}\left(e^{x_{k+1}}-e^{x_{k}}-1\right) \sim \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} \sim \frac{1}{2} \ln (n) \\
& e^{x_{n+1}}-e^{x_{1}}-n \sim \frac{1}{2} \ln (n) \\
e^{x_{n+1}}= & n+\frac{1}{2} \ln (n)+o(\ln (n)) \\
x_{n}= & \ln \left(n+\frac{1}{2} \ln (n)+o(\ln (n))\right) \\
x_{n}= & \ln (n)+\ln \left(1+\frac{\ln (n)}{2 n}+o\left(\frac{\ln (n)}{n}\right)\right) \\
x_{n}= & \ln (n)+\frac{\ln (n)}{2 n}+o\left(\frac{\ln (n)}{n}\right)
\end{aligned}
$$

The second term in A.E is $\frac{\ln (n)}{2 n}$ beautiful.

This exercice was given at Oral Examination Ecole Polytechnique, France.

Exercice 1: Try to find the third term in the three applications above.

Exercice 2: $k \geq 1$ integer, $x_{0}>0, x_{n+1}=x_{n}+\frac{1}{\sqrt[k]{x_{n}}}$
Find an equivalent of $\left(x_{n}\right)$ and the second, the third term in asymptotic expansion of $\left(x_{n}\right)$.
This sequence was use in Putnam 2006 B6 (U.S.A) it was asked find

$$
\lim _{n \rightarrow+\infty} \frac{x_{n}^{k+1}}{n^{k}}
$$

Exercice 3: $x_{0}=2, x_{n+1}=x_{n}+\ln \left(x_{n}\right)$ Find an equivalent of $\left(x_{n}\right)$ and the second, third term in asymptotic expansion. This one was Oral Examination 2010 Ecole Centrale , Paris France.

Exercice4: $a_{0}(x)=x \in[0 ; \pi], a_{n+1}(x)=\sin \left(a_{n}(x)\right)$. Prove that there exist a function $\varphi(x)$ such that we have the asymptotic expansion uniformly in $x \in[\alpha ; \pi-\alpha]$ where $0<\alpha<\frac{\pi}{2}$

$$
\frac{1}{a_{n}^{2}(x)}=\frac{n}{3}+\frac{\ln (n)}{5}+\varphi(x)+\frac{3}{25} \frac{\ln (n)}{n}+o\left(\frac{\ln (n)}{n}\right)
$$

Study the continuity of φ on $] 0 ; \pi[$. Study the monotony, the convexity of φ on $\left.] 0 ; \frac{\pi}{2}\right]$. Study the function $\varphi(\sin x)-\varphi(x)$.

This one was from Training for Agrégation of Mathematics.

