
Olympiad 
Combinatorics 

 

 

 

 

Pranav A. Sriram 

August 2014 

 



Chapter 6: Counting in Two Ways  1 

Copyright notices 

 

All USAMO and USA Team Selection Test problems in this chapter 

are copyrighted by the Mathematical Association of America’s 

American Mathematics Competitions. 

 

© Pranav A. Sriram. This document is copyrighted by Pranav A. 

Sriram, and may not be reproduced in whole or part without 

express written consent from the author.  

 

About the Author 

 

Pranav Sriram graduated from high school at The International 

School Bangalore, India, and will be a Freshman at Stanford 

University this Fall.  



 

  



Chapter 6: Counting in Two Ways  1 

 
 
 

 
 

6. COUNTING IN TWO WAYS 
 
 
 
Introduction 
 
Several combinatorics problems ask us to count something – for 
example, the number of permutations of the numbers from 1 to n 
without fixed points, or the number of binary strings of length n 
with more 1s than 0s. What’s interesting is that the techniques 
used to solve counting or enumeration problems can be applied to 
problems that don’t ask us to count anything. Problems in fields 
such as combinatorial geometry, graph theory, extremal set 
theory and even number theory can be solved by clever 
applications of counting – twice. 
 
The basic idea underlying this chapter is to compute or estimate 
some quantity Q (which will depend on the problem and 
information given to us) by counting in two different ways. We 
hence obtain two different expressions or bounds for Q. For 
instance, we may obtain E1 ≥ Q and E2 = Q. This allows us to 
conclude that E1 ≥ E2, which may have been very difficult to prove 
directly. The role of counting in this approach is thus to allow us 
to convert complicated combinatorial information into convenient 
algebraic statements. The main challenge lies in choosing Q 
appropriately, so that we use all the information given to us and 
derive an algebraic conclusion relevant to what we are trying to 
prove.   
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Incidence Matrices 
 
Let A1, A2, …, An be subsets of S = {1, 2, …, m}. A convenient way to 
express this information is by drawing an n × m matrix, with the n 
rows representing A1, A2, …, An and the m columns representing 
the elements of S. Entry aij = 1 if and only if element j belongs to Ai. 
Otherwise, aij = 0. The idea of counting the total number of 1s in 
an incidence matrix is very useful.  
 
Example 1 
Let A1, A2, …, A6 be subsets of S = {1, 2, …, 8}. Suppose each set Ai 
has 4 elements and each element in S is in m of the Ai’s. Find m.   
 
Answer: 
We draw an incidence matrix with six rows, representing the 
subsets A1, A2, …, A6 and eight columns representing the elements 
of S. The entry in the ith row and jth column is 1 if and only if the 
element j belongs to Ai. Otherwise the entry is 0. Since |Ai| = 4, 
each row contains four 1s. There are 6 rows, so the total number 
of 1s in our matrix is 6×4 = 24. 

 
Now each element of S is in m of the Ai’s. Thus each column of 

our matrix contains m 1s. So the total number of 1s in the matrix 
is 8m, since there are 8 columns. Thus 24 = 8m, so m = 3. ■ 

 
                

                

1 1  0 1 1  0  0  0 

                

                

                

Figure 6.1: A sample 6 x 8 incidence matrix with one row filled in, 
illustrating set A3 containing elements 1, 2, 4 and 5. 
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Counting Pairs and Triples 
 
What we are actually doing in the above proof is counting pairs of 
the form (element, set) where the set contains the element. Each 1 
in the matrix corresponds to such a pair. If we choose the set first 
and then the element, there are 6 choices for the set and then 4 for 
the element, for a total of 24 pairs. We can also choose the 
element first (8 choices), and then choose the set (m choices, since 
each element belongs to m sets) for a total of 8m pairs. Equating 
the two answers, 8m = 24, so m = 3.  
 

More generally, we have the following result: If A1, A2, …, Am are 
subsets of {1, 2, …, n} and each element j belongs to dj of the 
subsets, then 

∑     
 
    = ∑   

 
     

 
Both sides count the total number of 1s in the matrix, which is 

the number of pairs (set, element). The left side counts this 
quantity by picking the set first and the right side counts it by 
picking the element first. Note that both sides are also the sum of 
1s in the incidence matrix.  
 

In the first example, we counted pairs of the form (set, element) 
where the element belongs to the set. There are a few important 
variations of this technique: 

 
(i) Count triples of the form (set, set, element) where the two sets 

are distinct both contain the element. This is especially useful 
if we are given information about the intersection size of any 
two sets. These triples can be counted either by first fixing the 
two sets and then picking the element from their intersection, 
or by fixing the element and then picking two sets to which it 
belongs.  
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Note that counting triples of the form (set, set, element) is 
equivalent to counting the number of pairs of 1s that are in 
the same column in the incidence matrix representation.  

 
(ii) Count triples of the form (element, element, set) where the two 

elements both belong to the set. This is useful if we are given 
information about how many sets two elements appear 
together in. These triples can be counted in two ways: you can 
either fix the two elements first or you can fix the set first.   
 
Note that counting triples of the form (element, element, set) is 
equivalent to counting the number of pairs of 1s in the same 
row in the incidence matrix representation. 

 
The next example demonstrates (ii) in part (a), and the original 

idea of counting pairs (set, element) in part (b).  
 
Example 2 [Balanced block designs] 
Let X = {1, 2, …, v} be a set of elements. A (v, k, λ) block design over 
X is a collection of distinct subsets of X (called blocks) such that: 
(i) Each block contains exactly k elements of X 

(ii) Every pair of distinct elements of X is contained in exactly λ 
blocks 

 
Let b be the number of blocks. Prove that: 
(a) Each element of X is contained in exactly r = λ (v – 1)/(k – 1) 

blocks. (In particular, this means that each element is in the 
same number of blocks, which is initially not obvious) 

(b) r = b k / v 
 
Answer: 
(a) Consider an element s in X. We count in two ways the number 

of triples (s, u, B) where u is an element (different from s) and 
B is a block containing s and u. The first way we count will be 
to fix B and then u, and the second way will do the reverse. If s 
is in r blocks, then there are r ways to choose B,  and then (k – 
1) ways to choose u from B. This gives a total of r (k – 1). On 
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the other hand, there are (v – 1) ways to choose u first, and 
then λ ways to choose B such than B contains both u and s (by 
condition (ii)). This gives a total of λ (v – 1). Hence  r (k – 1) = λ 
(v – 1), which is what we wanted. 
 

(b) We count in two ways the number of pairs (x, B) where x is an 
element in a block B. There are v ways to choose x, and then r 
ways to choose B. This gives v r pairs. On the other hand, there 
are b ways to choose B first, and then k ways to choose x since 
|B| = k. This gives b k pairs. Hence b k = v r. ■ 

 
The real power of counting in two ways lies in proving 
inequalities. Typically, we count the number of pairs P (or triples 
T) of some objects in two ways. At least one of the two counting 
procedures should give us a bound on P (or T, as may be the case). 
To do this, we need to cleverly exploit information given to us in 
the problem statement. The next example is fairly simple, as we 
use ideas we have already seen in preceding examples.  
 
Example 3 [USA TST 2005] 
Let n be an integer greater than 1. For a positive integer m, let Sm = 
{1, 2, …, mn}. Suppose that there exists a 2n-element set T such 
that 
(a) each element of T is an m-element subset of Sm 
(b) each pair of elements of T shares at most one common 

element; and  
(c) each element of Sm is contained in exactly two elements of T. 

 
Determine the maximum possible value of m in terms of n. 
 
Remark: Make sure you understand the problem – the “elements” 
of T are actually sets, that is, T is actually a family of subsets of Sm. 
 
Answer: 
Let A1, A2, …, A2n be the elements of T. Let S be the number of 
triples (x, Ai, Aj) where x is an element of Sm belonging to both sets 
Ai and Aj. If we choose x first, there is only one choice for the pair 
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(Ai, Aj) since x belongs in exactly two elements of T by (c). This 
gives S = mn (the number of choices for x). If we select Ai and Aj 

first, there is at most one choice for x by (b). Thus S ≤ (  
 
), the 

number of ways of choosing the pair (Ai, Aj). Hence 
 

mn = S ≤(  
 
)   

 
⇒  m ≤ 2n – 1. 

 
To give a construction when m = 2n-1, simply take 2n lines in 

the plane, no three of which concur and no two of which are 

parallel. There will be (  
 
) = mn intersection points formed. The 

2n lines are the 2n elements of T, and the mn points are the 
elements of Sn. The conditions of the problem are satisfied, since 
each point lies on exactly two lines, each two lines meet at exactly 
one point and each line contains m = 2n – 1 points since it meets 
the other 2n-1 lines once each. ■ 

 
Slightly harder problems require a clever choice of what pairs or 
triples to count, and how to use the information in the problem to 
get the bounds we want. This comes with practice. One general 
principle to note is to pay attention to key phrases in the problem 
like “at most” and “at least”. These pieces of information often give 
a good idea of what we should count.  

 
Example 4 [IMO 1998, Problem 2] 
In a competition, there are a contestants and b judges, where b ≥ 3 
is an odd integer. Each judge rates each contestant as either pass 
or fail. Suppose k is a number such that for any two judges, their 

ratings coincide for at most k contestants. Prove that 
 

 
 ≥ 

   

  
. 

 
Answer: 
Let T be the number of triples (judge, judge, contestant) where the 
two judges both gave the same rating to the contestant. We can 

select the two judges in ( 
 
) ways, and then select the contestant in 

at most k ways by the condition of the problem. Hence T ≤ k ( 
 
).    
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Now take any individual contestant, and suppose the number 
of judges who rated her “pass” is p and the number who rated her 
“fail” is b – p. The number of triples containing this candidate is 

( 
 
) + (   

 
) ≥ (       

 
) + (       

 
) = (b – 1)

2
/4. Here we used 

convexity and the fact that b is odd.  
 

Thus each candidate is in at least (b – 1)2/4 triples, so T ≥ a(b – 

1)2/4. Combining this with our earlier estimate, 
 

a(b – 1)2/4 ≤ kb(b – 1)/2  ⇒  
 

 
 ≥ 

   

  
 ■ 

 
Unlike the previous example, the next problem offers us no clues 
that lead us to guess what we should count. However, we can 
exploit the geometry of the problem to our advantage.  
 
Example 5 [Iran 2010] 
There are n points in the plane such that no three of them are 
collinear. Prove that the number of triangles whose vertices are 
chosen from these n points and whose area is 1 is not greater than 
 

 
 (n

2
 - n). 

 
Answer: 
Let the number of such triangles be k. We count pairs (edge, 
triangle) such that the triangle contains the edge. If the number of 
such pairs is P, then clearly P = 3k, since each triangle has 3 edges.  
 

On the other hand, for any edge AB, there are at most four 
points such that the triangles they form with A and B have the 
same area. This is because those points have to be the same 
distance from line AB, and no three of them are collinear. Hence P 
is at most 4 times the number of edges, which is at most ( 

 
)  Thus 

P ≤ 4 ( 
 
). This gives 

 

3k ≤  ( 
 
)  ⇒ k ≤ 

 

 
(n2 - n) ■ 
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Figure 6.2: At most four points P1, P2, P3, P4  can form a triangle of 

unit area with segment AB 
 
Remark: Whenever I’m faced with a combinatorial geometry 
problem that involves proving an inequality, like the above 
problem, I use the following principle: use the geometry of the 
situation to extract some combinatorial information. After that, 
ignore the geometry completely and use the combinatorial 
information to prove the inequality. We use this principle in the 
next example as well.  
 
Example 6 [IMO 1987] 
Let n and k be positive integers and let S be a set of n points in the 
plane such that: 
(i) No three points of S are collinear 
(ii) For every point P in S, there are at least k points in S 

equidistant from P. 
 

Prove that k < 
 

 
 + √  .  

 
Answer: 
Condition (ii) implies that for each point Pi in S, there exists a 
circle Ci with center Pi and passing through at least k points of S.  

 
Now we count pairs (Pi, Pj) such that Pi and Pj are points in S. 

P1 P
2
 

P
3
 P

4
 

A B 
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Obviously the number of such pairs is ( 
 
)  On the other hand, each 

circle Ci has k points on its circumference, which give rise to 

( 
 
) pairs of points. Thus the n circles in total give us n ( 

 
) points. 

However, there is over counting, since some pairs of points may 
belong to two circles. Since any two circles meet in at most 2 
points, the number of pairs of points that we have counted twice 

is at most equal to the number of pairs of circles, which is ( 
 
).  

Hence the total number of pairs of points in S is at least n( 
 
) - ( 

 
).  

This implies 
 

n( 
 
) - ( 

 
) ≤ ( 

 
) 

 
⇒  ( 

 
) ≤ 2( 

 
) 

 
⇒ k

2
 + k – (n-1) ≤ 0. 

 
Solving this quadratic inequality, noting that k and n are 

integers, gives us the desired result. ■ 
 
The next example again requires a good choice of what to count, in 
order to capture all the given information. 
 
Example 7 [IMO Shortlist 2004, C1] 
There are 10001 students at a university. Some students join 
together to form several clubs (a student may belong to different 
clubs). Some clubs join together to form several societies (a club 
may belong to different societies). There are a total of k societies. 
Suppose that the following conditions hold: 
(i) Each pair of students is in exactly one club. 
(ii) For each student and each society, the student is in exactly 

one club of the society. 
(iii) Each club has an odd number of students. In addition, a club 

with 2m + 1 students (m is a positive integer) is in exactly m 
societies. 

Find all possible values of k. 
 
Answer: 
In order to use all the information in the question, we count 
triples (a, C, S), where a is a student, C is a club and S is a society, 
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where a   C and C   S. Let the number of such triples be T. 
 

Suppose we first fix a, then S, then C. We can choose a in 10001 
ways, S in k ways and then finally C in only one way (by condition 
(ii)). Hence T = 10001 k. 
 

Now suppose we fix C first. There are |C| ways of doing this. 
Then by condition (iii), there are (|C| -1)/2 ways to choose S. 
Finally there is only one way to choose a, by (ii). This gives 
 

T = ∑                         = ∑ (   
 
)            

 

On the other hand, the sum ∑ (   
 
)            is actually equal to 

the number of pairs of students. This is because each pair of 
students is in exactly one club by (i), so each pair of students is 

counted exactly once. Hence this sum is equal to (     
 

), so 

putting everything together 
 

(     
 

) = T = 10001 k  ⇒  k = 5000. 

 
Finally, to construct a configuration for k = 5000, let there be 

only one club C containing all students and 5000 societies all 
containing only one club (C). It’s easy to see that this works. ■ 
 

 
 

Counting with Graphs 
 
In the next few examples, we show how to use counting in two 
ways to solve some problems on graphs. Modeling situations 
using graphs is very useful, since graphs are very convenient to 
work with while counting in two ways. For example, suppose we 
want to count pairs of people such that the two people are friends. 
If we draw a graph with vertices representing people and an edge 
between two people if and only if they are friends, then the 
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problem is equivalent to counting the number of edges in the 
graph.  
 
Some useful properties of graphs 
 
Let G be a graph with n vertices v1, v2, …, vn. Let di be the degree of 
vi, E be the set of edges and |E| = k. All summations without indices 
are assumed to be from 1 to n. We have the following useful 
properties: 
 
Lemma 1: ∑   = 2k   (this is because the LHS counts each edge of 
the graph twice) 
 

Lemma 2: ∑  
  ≥  

 ∑   
 

 
 (By Cauchy-Schwarz)  

 
 
⇒ ∑  

  ≥ 
   

 
 

 

Lemma 3: ∑(  
 
) ≥ 

   

 
 – k  

 

Proof: (  
 
) = 

  
    

 
 . Using lemma 1 and lemma 2 produces the 

result.  
 
Lemma 4: ∑               )  = ∑   

  
     

 
Proof: Each term di appears in the sum on the LHS di times (once 
for each of the neighbors of vi). Thus the total sum will be the sum 

of di × di = di
2 for each i, which is the RHS. 

 
There are also some important results on directed graphs, 

especially tournaments. A tournament on n vertices is a directed 
graph such that between any two vertices u and v, there is either a 
directed edge from u to v or a directed edge from v to u. One can 
interpret these graphs as follows: the n vertices stand for 
participants in a tournament, and each two players play a match. 
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There are no ties. If v beats u, then there is a directed edge from v 
to u.  
 

Let P1, P2, …, Pn be the n participants. Let wi and li denote the 
number of wins and losses of Pi. Clearly wi + li = (n – 1) for each i, 
because each person plays against (n – 1) others. Also, ∑   = ∑    
since each match has a winner and a loser, and so contributes 1 to 
both sides. Hence in fact both sides are equal to ( 

 
), the total 

number of matches. We have another interesting but less obvious 
result: 

 
Lemma 5: ∑  

  = ∑   
 .  

 
Proof: Define a noncyclic triple to be a set of 3 players A, B and C 
such that A beat both B and C and B beat C. Call A the winner of the 
triplet and C the loser of the triplet. If we count noncyclic triplets 
by winners, the sum would be ∑(  

 
)  since after choosing the 

winner there are (  
 
) ways to choose the other two players who 

he beat. If we count by losers, the sum is ∑(  
 
), since after 

choosing the loser there are (  
 
) ways to choose the other two 

players. Hence ∑(  
 
) = ∑(  

 
)  Combining this with ∑   = ∑    we 

get the result.  
 
Remark: Whenever you see expressions of the type in this lemma, 
like a sum of squares, try to interpret them combinatorially. For 

instance, it is often useful to convert x2 to  ( 
 
) + 2x. Allow these 

sums to give you hints as to what to count. In the proof of lemma 
5, the term  (  

 
) gives us a hint to count triples of the form (X, Y, Z) 

such that X beat both Y and Z. This almost automatically leads us 
to the solution.  
 
Example 8 [APMO 1989] (U*) 
Show that a graph with n vertices and k edges has at least k (4k – 

n2 )/3n triangles. 
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Note: The symbol U* in brackets next to a problem indicates that 
it is a useful result and should be remembered.  
 
Answer: 
We count pairs (edge, triangle) where the triangle contains the 
edge. Consider an edge vivj. How many triangles have vivj as an 
edge? vi is joined to (di – 1) vertices other than vj, and vj is joined to 
dj vertices other than vi. There are only n – 2 vertices other than vi 

and vj. Hence at least (di – 1) + (dj – 1) – (n – 2) = (di + dj – n) 
vertices are joined to both vi and vj. Each of these gives one 
triangle. Hence each edge vivj is in at least max {0, (di + dj – n)} 
triangles.  

 
Figure 6.3: The set of vertices neighboring both vi and vj must 

contain at least (di + dj – n) vertices 
 

Thus the total number of triangles is at least  
 

 

 
∑                 )  = 

 

 
∑   

  
    – 

  

 
    (Using lemma 4) 

 

≥ 
 

 
 × 

   

 
 - 

  

 
 = 

        

  
.    (Using lemma 3) 

 
Note that we divided by 3 because otherwise each triangle 

would be counted thrice (once for each edge). ■ 
 
 

 

Neighbors of vi Neighbors of v
j
 

vi v
j
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Corollary 1 (U*) 
A graph with no triangles has at most ⌊    ⌋ edges. Equality is 
achieved only by bipartite graphs with an equal or almost equal 
number of vertices in each part. This is an extremely useful result, 
and is a special case of Turan’s theorem, which will be discussed 
in the exercises of chapter 8.   
  
Example 9 [Indian TST 2001] (U*) 
Let G be a graph with E edges, n vertices and no 4-cycles. Show 

that E ≤ 
 

 
(1 + √    ).  

 
Answer: 
Let the vertices be {v1, …, vn} and let the degree of vi be di. Let T be 
the number of “V-shapes”: that is, triples of vertices (u, v, w) such 
that v and w are both adjacent to u. The vertices v and w may or 
may not be adjacent and triples {u, v, w} and {u, w, v} are 
considered the same.  

 
Figure 6.4: A “V shape” 

 
The reason for this choice of T is that if we first select v and w, 

then there is at most one u such that {u, v, w} is a triple in T. 
Otherwise there would be a 4 cycle. Hence we get T ≤ ( 

 
), since 

for each of the ( 
 
) ways of choosing v and w, there is at most one 

way to choose u.  
 

If we choose u first, there are (  
 
) ways of choosing v and w, 

where du is the degree of u. Summing over all choices for u, and 
then using lemma 3, we get 

v w 

u 
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T = ∑ (  
 
) 

    ≥ 
   

 
 - E 

 
Combining this with T ≤ ( 

 
), 

 
   

 
 – E ≤ 

      

 
. 

 
This reduces to a quadratic inequality in E, which yields the 

desired bound. ■ 
 

Sometimes, when we need to bound or count the number of 
objects satisfying some property, it is easier or more convenient 
to count the number of objects not satisfying the property. Then 
we can subtract this from the total number of objects to get the 
result.  
 
Example 10 [USAMO 1995] 
Suppose that in a certain society, each pair of persons can be 
classified as either amicable or hostile. We shall say that each 
member of an amicable pair is a friend of the other, and each 
member of a hostile pair is a foe of the other. Suppose that the 
society has n people and q amicable pairs, and that for every set of 
three persons, at least one pair is hostile. Prove that there is at 

least one member of the society whose foes include q (1- 4q/n
2
) or 

fewer amicable pairs. 
 
Answer: 
We naturally rephrase the problem in graph theoretic terms, with 
vertices representing people and an edge joining two vertices if 
and only if they form an amicable pair. The graph has no triangles 
by assumption, n vertices and q edges. We wish to estimate the 
number of edges containing 2 foes of X, where X is a vertex. To do 
this, we first count P, the number of pairs (E, X), where E is an 
edge containing X or a friend of X.  
 

First we count the number of pairs (X, E) where E is an edge 
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containing a neighbor of X but not containing X. This quantity will 
be equal to T, the number of triples (X, Y, Z) such that XY and YZ 
are edges. (X, Y, Z) is considered different from (Z, Y, X). Note that 
XZ cannot be an edge by the condition that there are no triangles. 
To compute T, we count by Y. The number of triples containing Y 
is dY (dY – 1), so the total number of triples is ∑   

   i(di – 1). 
 

Now clearly the number of pairs (X, E) where E is an edge 
containing X is given by the sum ∑   

   i. If we add this summation 
to the previous summation, we would have counted the number of 
pairs (X, E) where E is an edge containing X OR a friend of X but 
not X. Thus the total number of such pairs is 

 

P = ∑   
   i(di – 1) + ∑   

   i = ∑   
   i

2 ≥ 4q
2
/n, 

 
by lemma 2.  
 

Hence by averaging, there is some X such that there at least 

4q
2
/n

2
 pairs (X, E), where E is an edge X or at least one neighbor of 

X. Thus the number of edges joining two foes of X is at most q – 

4q2/n2 = q (1 – 4q/n2). 
 
Example 11 [Generalization of Iran TST 2008] 
In a tournament with n players, each pair of players played exactly 
once and there were no ties. Let j, k be integers less than n such 

that j < 1 + 
  (

       
 

)

(  )
 . Show that there exist sets A and B of k 

players and j players respectively, such that each player in A beat 
each player in B.  
 
Answer 
Count (k + 1)–tuples of the form (P1, P2, …, Pk, L) where L lost to 
each of the players P1, P2, …, Pk. Let T be the total number of such 

tuples. If we fix L, we get (  
 
) tuples containing L, where dL is the 

number of players L lost to. Summing over all n choices of L, T ≥ 
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∑ (  
 
) 

   , where di is the number of losses of the ith player. Hence 

by Jensen’s inequality, T ≥ n × (
∑   

 
     

 
) = n × (       

 
), since 

∑   
 
    = n (n – 1)/2.  

 
Now assume to the contrary that there do not exist such sets A 

and B. Then for any choice of P1, P2, …, Pk, there are at most (j – 1) 

choices for L. Hence T ≤ ( 
 
)(j – 1).  

 

Combining these estimates gives (j – 1) ≥ 
  (

       
 

)

(  )
, which 

contradicts the condition of the problem. Thus, our assumption in 
the second paragraph is false, and such sets A and B indeed exist.   
 
Example 12 [IMO Shortlist 2010 C5] 
n ≥4 players participated in a tennis tournament. Any two players 
have played exactly one game, and there was no tie game. We call 
a company of four players bad if one player was defeated by the 
other three players, and these three players formed a cyclic triple 
(a set (A, B, C) such that A beat B, B beat C and C beat A). Suppose 
that there is no bad company in this tournament. Let wi and li be 
respectively the number of wins and losses of the ith player. Prove 
that 
 

∑         
     

     
 

Answer: 
Note that  

∑         
 
   

3 = ∑    
  

      
   +  ∑   

       
     

     
 
We will show that  
 
(i) ∑   

  
    ≥ ∑   

  
    

 
(ii) ∑     

  
    ≥ ∑   
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From now on, any summation without indices is assumed to be 
from 1 to n. Note that by using lemma 5, we can reduce (i) to the 
“more combinatorial” form 

 

(iii) ∑(  
 
) ≥ ∑(  

 
) 

 
Let us define a “chained quadruple” as a set of 4 players with 

no cyclic triple amongst them. It is easy to see that a chained 
quadruple has  
(a) A person who won against all the other three players, called 

the winner 
(b) A person who lost against all the other three players, called 

the loser 
 

The converse of (a) is not true, since the other three players 
may form a cyclic triple. However, the converse of (b) holds, since 
by assumption there is no bad quadruple. Let Q be the number of 
chained quadruples. If we count Q by picking the loser first, we get 

 

Q = ∑(  
 
) 

 
If we count Q by picking the winner first, noting that the 

converse of (a) doesn’t hold, then 
 

Q ≤ ∑(  
 
) 

 

Hence ∑(  
 
) ≥ ∑(  

 
), which proves (iii) and hence (i).  

 
To prove (ii), subtract ∑     from both sides and divide by 2, 

to write it as: 
 

(iv)  ∑  (
  
 
)   ∑   (

  
 
)     

 
Observe that the LHS of this expression counts pairs of the 

form (quadruple, person) such that the person won exactly one 
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game against the other three in the quadruple. Similarly, the RHS 
counts pairs such that the person won exactly two games.  
 

Now let us look at the types of quadruples we can have. If in a 
certain quadruple the number of games won by each person 
against the other three are a, b, c, d in non-increasing order, we 
say that this quadruple is of type (a, b, c, d). The only types we can 
have are: 
 
(3, 1, 1, 1) – Note that this refers to a quadruple in which one 
person beat the other three, and the other three each won one 
game. This type of quadruple contributes 3 to the LHS of (iv) 
(three people won one game) and 0 to the RHS (no one won two 
games). 
(2, 2, 1, 1) – This contributes 2 to both sides of (iv) 
(3, 2, 1, 0) – This contributes 1 to both sides of (iv) 
(2, 2, 2, 0) – This is not allowed: this is a bad company.  
 

Thus we see that every allowed quadruple contributes at least 
as much to the LHS of (iv) as it does to the RHS. Hence (iv) indeed 
holds, which proves (ii). Hence (i) and (ii) together give us the 
desired result and we are done.  
 
Remark 1: This example shows the true power of “interpreting 
things combinatorially”.  

Remark 2: This problem was the first relatively hard (rated 
above C2 or C3) combinatorics problem I ever solved, and my 
solution was essentially the one above. The thought process 
behind this solution is fairly natural – keep expressing things 
“combinatorially”, let these expressions guide what you choose to 
count, and exploit the fact that there is no “(2, 2, 2, 0)”. Also note 
that it is not essential to prove (i) and (ii) separately: one can 

directly show that ∑(  
 
) + ∑  (

  
 
) ≥ ∑(  

 
) + ∑   (

  
 
)  by 

comparing the contributions to each side by each type of 
quadruple.  
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Miscellaneous Applications 
 
In this section we look at some unexpected applications of 
counting in two ways.  
 
Example 13 [IMO 2001, Problem 4] 
Let n be an odd integer greater than 1 and let c1, c2, …, cn be 
integers. For each permutation a = {a1, a2, …, an} of {1, 2, …, n} , 
define S(a) = ∑   

   ici . Prove that there exist permutations a ≠ b of 
such that n! is a divisor of S(a) – S(b). 
 
Answer: 
Suppose to the contrary that all the S(a)’s are distinct modulo (n!). 
Since there are n! possibilities for a, this means that S(a) takes 
each value in {1, 2, … , n!} modulo n! Consider the sum of all the 
S(a)’s modulo n!. If the sum is S, then  
 

S ≡  1 + 2 + … + n! ≡ n! (n! + 1)/2 mod n! ≡ n!/2 mod n!. 
 
On the other hand, the coefficient of each ci in S is  
 

(n – 1)! (1 + 2 + … + n) = n! (n + 1)/2 ≡ 0 mod n!, 
 

since n is odd and 2 divides n + 1. Thus the coefficient of each ci in 
S is divisible by n!, so S ≡ 0 mod n!. This is a contradiction to the 
result in the first paragraph. ■ 
 
Example 14 [IMO Shortlist 2003, C4] 
Given n real numbers x1, x2, …, xn and n further real numbers y1, y2, 
…, yn. The entries aij (with 1 ≤ i, j ≤ n) of an n × n matrix A are 
defined as follows: 
 

     {
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Further, let B be an n × n matrix whose elements are numbers 
from the set {0, 1} satisfying the following condition: The sum of 
all elements of each row of B equals the sum of all elements of the 
corresponding row of A; the sum of all elements of each column of 
B equals the sum of all elements of the corresponding column of A. 
Show that in this case A = B.  

Answer: 
Let bij denote the entry in the ith row and jth column of B. Define  
 

S = ∑                         

 
On the one hand, 
 

S = ∑   
 
    ∑   

   ij - ∑   
   ij) + ∑   

 
    ∑    

 
    -∑     

 
    = 0, 

 
since ∑   

   ij = ∑   
   ij and ∑    

 
    = ∑    

 
    by the conditions of 

the problem.  
 

On the other hand, note that if xi + yj ≥ 0, then aij = 1 so (aij – bij) 
≥ 0. If xi + yj < 0, then aij = 0 so aij – bij ≤ 0. Thus in both cases, (xi + 
yj) (aij – bij) ≥ 0. Hence each term in the summation is nonnegative, 
but the total sum is 0. Thus each term is 0. Hence whenever (xi + 
yj) ≠ 0, we must have aij = bij. Whenever (xi + yj) = 0, then aij = 1. In 
these cases we must have bij = 1 since the sum of all the entries in 
both matrices is the same. Hence in all cases aij = bij, and we are 
done. ■ 

 
Remark: Where on earth does the expression  
 

S = ∑                         

 
come from?!?! Note that one way of proving that several different 
real numbers are 0 is to show that their squares sum to 0, since no 
square is negative. Thus, a first approach to the problem may be 
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to show that the sum  
 

S’ = ∑          
          

 
is 0. This doesn’t work as it doesn’t utilize information about the 
x’s and y’s. Instead we try the following modification: we seek to 
weight each term           by some other quantity that still 

ensures that each term in the summation is nonnegative, and 
additionally enables us to use the information about the x’s and y’s 
to show that the entire sum is 0.  
 
Example 15 [Indian TST 2010] 
Let A = (ajk) be a 10 x 10 array of positive real numbers such that 
the sum of numbers in each row as well as in each column is 1.  
Show that there exists j < k and l < m such that  

              
 

  
 

 
Answer: 
To make things more intuitive, let us interpret the algebraic 
expression              visually. The centers of the squares 

containing entries    ,    ,     and     form a rectangle with sides 

parallel to grid lines. Define the value of this rectangle to be 
             . Assuming to the contrary that the value of any 

such rectangle is strictly less than 1/50.  
 

Observe that as j, k, l, m vary within the bounds 1 ≤ j < k ≤ 10 

and 1 ≤ l < m ≤ 10, we obtain (  
 
)

2 = 452 such rectangles. Let S be 

the sum of values of these 452 rectangles. By our earlier 

assumption, we obtain S < 45
2
/50 = 40.5. We will now compute S 

in a different way to yield a contradiction.  
 

Note that ajl and akm lie diagonally opposite and ajm and akl lie 
diagonally opposite each other. Thus in each rectangle the 
diagonally opposite pairs of entries are multiplied. Hence, when 
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the sum of values is taken over all rectangles, each entry aij occurs 
in products with every other entry in the array except those in its 
own row or column, since two entries in the same row or column 
can never be diagonally opposite in a rectangle. Therefore, 

 

S = 
 

 
∑               , 

 
where Sij is the sum of all entries except those in the ith row and 
jth column. Note that we have divided by two since if we simply 
sum the terms aijSij, we will be counting each product aijakl twice. 
 

Observe that Sij = (10 – 1 – 1 + aij) = (8 + aij), since the sum of all 
entries is 10 and the sum in each row and column is 1. Note that 
the “ + aij” occurs since when we subtract all elements in row i and 
in column j, aij is subtracted twice. Thus the total sum is  
 

S = 
 

 
∑                = 

 

 
∑                     

= 4∑             +
 

 
 ∑    

 
         

 

Now ∑             = 10 and ∑    
 

         ≥ 
 ∑             

   

2 = 1, using 

Cauchy Schwarz. Thus  
 

S ≥ 4x10 + 0.5 = 40.5, a contradiction. ■ 
 

Remark: The visual interpretation as “diagonally opposite entries 
in rectangles” is by no means essential (and entails a little abuse 
of notation as well, for which I apologize). Simply taking a suitable 
double summation would lead to a significantly shorter but 
equivalent proof. However, I felt the basic intuition behind the 
problem may have been lost in a sea of symbols that would have 
mysteriously spat out the solution, so I chose to write the proof 
this way.    
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Exercises 
 
1. [Due to Grigni and Sipser] 

Consider an m × n table (m rows, n columns), in which each 
cell either contains a 0 or a 1. Suppose the entire table 
contains at least αmn 1s, where 0 < α < 1. Show that at least 
one of the following must be true: 

(i) There exists a row containing at least n√  1s 

(ii) There exist at least m√  rows containing at least αn 1s.  
 
2. [Italy TST 2005, Problem 1] 

A class is attended by n students (n > 3). The day before the 
final exam, each group of three students conspire against 
another student to throw him/her out of the exam. Prove that 
there is a student against whom there are at least 

√            conspirators. 

 
3. [Important Lemmas on incident matrices] (U*) 

Let A be an r × c matrix with row sums Ri (that is, the sum of 
the elements in the ith row is Ri) and column sums Cj. Suppose 
Ri and Cj are positive for all 1 ≤ i ≤ r and 1 ≤ j ≤ c.  
 

(i) Show that ∑
   

  
    = r and ∑

   

  
    = c 

(ii) Suppose Cj ≥ Ri whenever aij = 1. Using (i), show that r ≥ 
c. 

(iii) Suppose instead of the condition in (ii) we were given 
that 0 < Ri < c and 0 < Cj < r for each i and each j, and 
furthermore, Cj ≥ Ri whenever aij = 0. Prove that r ≥ c.  

 
4. [IMO 1987, Problem 1] 

Let p(n, k) denote the number of permutations of {1, 2, …, n} 
with exactly k fixed points. Show that ∑         

    = n! 
 



Chapter 6: Counting in Two Ways  25 

5. [Corradi’s Lemma] (U*) 
Let A1, A2, …, An be r-element subsets of a set X. Suppose that 

Ai ⋂   ≤ k for all 1 ≤ i < j ≤ n. Show that |X| ≥ 
   

        
. 

 
6. [Erdos-Ko-Rado] (U*) 

Let F be a family of k-element subsets of {1, 2, …, n} such that 
every two sets in F intersect in at least one element. Show that 

|F| ≤ (   
   

).  

 
7. [Indian Postal Coaching 2011] 

In a lottery, a person must select six distinct numbers from {1, 
2, …, 36} to put on a ticket. The lottery committee will then 
draw six distinct numbers randomly from {1, 2, …, 36}. Any 
ticket not containing any of these 6 numbers is a winning 
ticket. Show that there exists a set of nine tickets such that at 
least one of them will certainly be a winning ticket, whereas 
this statement is false if 9 is replaced by 8. 

 
8. [Hong Kong 2007] 

In a school there are 2007 girls and 2007 boys. Each student 
joins at most 100 clubs in the school. It is known that any two 
students of opposite genders have joined at least one common 
club. Show that there is a club with at least 11 boys and 11 
girls. 

 
9. [IMO Shortlist 1995, C5]  

At a meeting of 12k people, each person exchanges greetings 
with exactly (3k + 6) others. For any two people, the number 
of people who exchange greetings with both of them is the 
same. How many people are at the meeting? 

 
10. [Based on Furedi’s result on maximal intersecting 

families] 
Let n and k be positive integers with n > 2k – 1, and let F be a 
family of subsets of {1, 2, …, n} such that each set in F contains 
k elements, and every pair of sets in F has nonzero 
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intersection. Suppose further that for any k-element subset X 
of {1, 2, …, n} not in F, there exists a set Y in F such that X ⋂  = 

 . Show that there are at least 
(  )

(   
 )  

  sets in F. 

 
11. [IMO Shortlist 2000, C3] 

Let n > 3 be a fixed positive integer. Given a set S of n points P1, 
P2, …, Pn in the plane such that no three are collinear and no 
four concyclic, let at be the number of circles Pi Pj Pk that 
contain Pt in their interior, and let m(S) = a1 + a2 + … + an. 
Prove that there exists a positive integer f(n) depending only 
on n such that the points of S are the vertices of a convex 
polygon if and only if m(S) = f(n). 

 
12. [Iran 2010] 

There are n students in a school, and each student can take 
any number of classes. There are at least two students in each 
class. Furthermore, if two different classes have two or more 
students in common, then these classes have a different 
number of students. Show that the number of classes is at 

most (n – 1)2. 
 
13. [IMO Shortlist 2004, C4] 

Consider a matrix of size n × n whose entries are real numbers 
of absolute value not exceeding 1. The sum of all entries of the 
matrix is 0. Let n be an even positive integer. Determine the 
least number C such that every such matrix necessarily has a 
row or a column with the sum of its entries not exceeding C in 
absolute value. 

 
14. [Generalization of USAMO 2011, Problem 6] 

Let A1, A2, …, An be sets such that |Ai| = (   
 

) for each 1 ≤ i ≤ n 

and |  ⋂  | = (n – 2) for each 1 ≤ i < j ≤ n. Show that |A1 ∪ A2 

∪ … ∪ An|≥ ( 
 
), and show that it is possible for equality to 

occur.  
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15. [Iran 1999] 
Suppose that C1, C2, …, Cn (n ≥ 2) are circles of radius one in the 
plane such that no two of them are tangent, and the subset of 
the plane formed by the union of these circles is connected. 

 
Let S be the set of points that belong to at least two circles. 
Show that |S| ≥ n. 

 
16. [IMO Shortlist 2000, C5] 

Suppose n rectangles are drawn in the plane. Each rectangle 
has parallel sides and the sides of distinct rectangles lie on 
distinct lines. The rectangles divide the plane into a number of 
regions. For each region R let v(R) be the number of vertices. 
Take the sum of v(R) over all regions which have one or more 
vertices of the rectangles in their boundary. Show that this 
sum is less than 40n. 

 
17. [Indian TST 1998] 

Let X be a set of 2k elements and F a family of subsets of X 
each of cardinality k such that each subset of X of cardinality 
(k – 1) is contained in exactly one member of F. Show that (k + 
1) is a prime. 

 
18. [IMO Shortlist 1988] 

For what values of n does there exist an n × n array of entries -
1, 0 or 1 such that the 2n sums obtained by summing the 
elements of the rows and the columns are all different? 

 
19. [IMO 2001, Problem 3] 

Twenty-one girls and twenty-one boys took part in a 
mathematical competition. It turned out that each contestant 
solved at most six problems, and for each pair of a girl and a 
boy, there was at least one problem that was solved by both 
the girl and the boy. Show that there is a problem that was 
solved by at least three girls and at least three boys. 
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20. [IMO 2005, Problem 6] 
In a mathematical competition 6 problems were posed to the 
contestants. Each pair of problems was solved by more than 
2/5 of the contestants. Nobody solved all 6 problems. Show 
that there were at least 2 contestants who each solved exactly 
5 problems. 

 
21. Let A be a set with n elements, and let A1, A2, …, An be subsets 

of A such that |Ai| ≥ 2 for each 1 ≤ i ≤ n. Suppose that for each 
2-element subset A’ of A, there is a unique i such that A’ is a 
(not necessarily proper) subset of Ai. Show that for all pairs (i, 
j) such that 1 ≤ i < j ≤ n, Ai ∩ Aj  > 0.  

 
22. [USAMO 1999 proposal] 

Let n, k and m be positive integers with n > 2k. Let S be a 
nonempty set of k-element subsets of {1, 2, …, n} such that 
every (k + 1)-element subset of {1, 2, …, n} contains exactly m 
elements of S. Prove that S must contain every k-element 
subset of {1, 2, …, n}.  

 
23. [Based on Zarankeiwicz’ problem] 

At a math contest there were m contestants and n problems. It 
turned out that there were numbers a < m and b < n such that 
there did not exist a set of a contestants and b problems such 
that all a contestants solved all b problems. Define the score of 
each contestant to be the number of problems he solved, and 
let S denote the sum of the scores of all m contestants. Show 

that S ≤ (a – 1)
1/b

nm
1-1/b + (b – 1)m.  

 
24. [IMO Shortlist 2007, C7] 

Let   < 
   √ 

 
 be a positive real number. Prove that there exist 

positive integers n and p >  2
n
 for which one can select 2p 

pairwise distinct subsets S1, S2, …, Sp, T1, T2, …, Tp of the set {1, 
2, …, n} such that Si ⋂   ≠   for all 1 ≤ i, j ≤ p.  

 


